Tidal Slough "Geometry" Filters Estuarine Drivers, Mediates Transport Processes, and Controls Variability of Ecosystem Gradients

Chris Enright
DWR
EET
January 26, 2009

Key ideas

- Estuaries generate <u>variability</u> by interaction of physical drivers and "geometry as filter" at the land-water-air interface.
- Geometry filters drivers at a variety of time scales
 - Natural tidal creek systems have more complex land-water-air interfaces.
 - More complex geometry begets more variable scalar gradient response.
 - The "why does variability matter?" corollary:
 - ✓ Native plants/fishes evolved in a more variable environment.

Variability is stressful!

For example, consider that tides both stress and favor aquatic versus terrestrial biota.

- Low tide, hot day stresses fish/inverts while stimulating photosynthesis.
- High tide stresses rooted plants and reduces gas exchange and light.
- Nevertheless, this is the native species template.

Geometry "filters" estuarine drivers

Drivers

(forcing mechanisms)

- Meteorology
- Tides
- River inputs

<u>Linkages</u>

(hydrodynamic processes)

- Advection
- Dispersion
- Gravitational Circulation

<u>Outcomes</u>

(Chemical/Biological Habitat Characteristics)

Gradients of

- Residence time
- Salinity
- Temperature
- Sediment
- Biota
- Toxics
- etc.

Geometry "filters" estuarine drivers

Geometry "filters" estuarine drivers

Geometry "filters" estuarine drivers

 Concentration gradients in space and time ("Outcomes").

• Concentration gradients in space and time ("Outcomes").

 Space and time: must consider <u>scale</u> because drivers oscillate and episode at different scales

Drivers of variability in space (dC/dx)

Drivers of variability in space (dC/dx)

DISPERSION of salt upstream = **ADVECTION** of salt downstream

Drivers of variability in space (dC/dx)

DISPERSION of salt upstream = **ADVECTION** of salt downstream

Drivers of variability in space (dC/dx)

The salt balance also depends on

The salt balance also depends on

DISPERSION of salt upstream = **ADVECTION** of salt downstream

The salt balance also depends on

DISPERSION of salt upstream = **ADVECTION** of salt downstream

Scaling down, geometry really matters

Tidal/Net Flow and Cumulative Volume

photo by Rob Schroeter First Mallard Branch Marsh Plain Suisun Slough

Flow Variability

Consider some variability drivers on First Mallard temperature

End of June 2004

Variability Drivers: Diel heating/cooling

Variability Drivers: Mixed semi-diurnal tidal asymmetry

End of June 2004

Variability Drivers: Tide strength

End of June 2004

Variability Drivers: 335 yr HT Precession

End of June 2004

Geometry filter: geomorphic thresholds

End of June 2004

Geometry filter: slough connectivity and tidal excursion

End of June 2004

Hydrogeomorphic variability lost

Bay Institute; based on Atwater 1982

Key ideas

- Estuaries generate variability by interaction of physical drivers and "geometry as filter" at the land-water-air interface.
- Geometry filters drivers at all time scales
- Natural tidal creek systems have more complex land-water-air interfaces
- More complex geometry begets more variable gradient response.
- The "why does variability matter?" corollary:
- Native plants/fishes evolved in a more variable environment.

DRERIP Tidal Marsh Restoration "Outcome"

 "Locally provide areas of cool water refugia for delta smelt."

 We know something about land-water interface temperature dynamics for this

Shape: MHHW ~ High First Mallard Branch Tide

 We know something about land-water interface temperature dynamics for this

Shape: MHHW ~ High First Mallard Branch Tide

What about:

?

Suisun land-water interface characteristic

Suisun land-water interface characteristic

Suisun land-water interface characteristic

Yolo-Cache land-water interface characteristic

Yolo-Cache land-water interface characteristic

Yolo-Cache land-water interface characteristic

Thank you

- Steve Culberson
- Jon Burau
- Paul Massera
 - Brad Tom
 - Kate Le
 - Terri Fong

Additional slides

High frequency variability at First Mallard Branch

High frequency variability at First Mallard Branch

High frequency variability at First Mallard Branch

Connectivity lost: Tidal creeks systems are now "Lakes"

